
Journal of Statistical Physics, Vol. 65, Nos. 5/6, 1991 

Quantum and Stochastic Aspects of 
Low-Temperature Trapping and Reaction Dynamics 

P. E. Parris 1 

We discuss theoretical work on motion-limited trapping kinetics at very low 
temperatures where theories based upon strictly diffusive models break down 
due to quantum mechanical effects. In addition, we present numerical results 
which confirm earlier asymptotic predictions regarding the survival probability 
for one-dimensional chains, and discuss the important role fluctuations and self- 
averaging (or the lack thereof) play in the analysis of finite systems. 
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1. I N T R O D U C T I O N  

Many of the most commonly used experimental methods for investigating 
exciton transport  in organic and inorganic molecular solids rely on the 
interaction of mobile excitations with other localized species, such as 
impurity atoms or molecules, which have been doped into the solid so as 
to irreversibly trap or quench the excitation. (1-14/ The prevalence of such 
methods, along with an increasing interest in diffusion-limited processes 
arising in other areas of chemistry and physics, has led to considerable 
work on a standard trapping model, in which a single particle moves in a 
d-dimensional medium containing randomly-placed irreversible traps in 
fixed concentration. (~5-51) This corresponds to a reaction of the type 
A + B-~ B, where A represents the mobile excitation and B represents the 
stationary molecules of lower energy which can trap or quench the excita- 
tion. The primary focus of many previous theoretical studies has been the 
averaged survival probability P( t ) ,  which is defined as the probability for 
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a randomly-placed particle to survive in the medium for a time t without 
being trapped. When particle motion is diffusive it has been rigorously 
shown (41'42) that at long times the survival probability has a stretched- 
exponential form, (33~3) P(t)~exp[--Atd/(2+a)], which arises from 
long-lived particles located in rarely-occurring regions of the medium 
devoid of traps. Such regions lead to asymptotic tails p(T)~ e x p ( - ~  a/z) in 
the distribution of trapping times ~ for the eigenmodes of the disordered 
system, and the stretched-exponential decay that results is sometimes 
referred to as "Lifshitz-tail" behavior in analogy with tails derived by 
Lifshitz (52) that appear in the density-of-states (DOS) of energetically- 
disordered quantum mechanical systems. (52 55~ 

Despite the rigor with which predictions regarding the long-time 
behavior have been derived, numerical simulations (19'2~ and exact 
enumeration calculations (22~ suggest that, except in one dimension, Lifshitz 
tail effects may be difficult to observe experimentally due to the long times 
at which they occur. There are some indications that the one-dimensional 
result P ( t ) ~ e x p ( - A t  ~/3) has been inferred from fluorescence (9) and con- 
ductivity (51) measurements, but it generally remains true that most high- 
temperature exciton trapping data have been interpreted using theoretical 
results obtained from approximate treatments of the Green's function, or 
upon truncated cumutant expansions--approaches which are valid only 
over finite times (15-32) and which therefore fail to predict the correct 
asymptotic behavior. The development of a unified analytical approach to 
study the crossover between these short-time theories and the long-time 
Lifshitz-tail behavior remains a pressing theoretical problem. 

Another interesting question which has attracted some recent atten- 
tion, however, is how the asymptotic behavior of trapping dynamics is 
altered when particle motion is not diffusive. Examples of situations in 
which such questions become important include strongly disordered 
systems in which anomalous or subdiffusive transport occurs, in classical 
systems where noninteracting particles move ballistically (or generally with 
an enhanced or superdiffusive mechanism), or at low temperatures in 
condensed phases when wave motion obtains due to quantum mechanical 
effects. 

Regarding this latter possibility, there are reasons to believe that 
quantum mechanical effects play an increasingly important role in exciton 
trapping experiments conducted at very low temperatures. (44-5~ In this 
limit, the inelastic mean free path of the particle can exceed the average dis- 
tance between traps, and the standard trapping model (which assumes 
motion to be diffusive over smaller length scales) no longer applies. Elec- 
tron spin-echo measurements (56) suggest that such a situation may, in fact, 
describe low-temperature ( ~ 2 K )  exciton trapping measurements on a 
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number of quasi-one-dimensional molecular solids. (7&31'32) A difficulty 
preventing the universal acceptance of this interpretation is that the low- 
temperature (coherent) limit of the trapping problem is less well-under- 
stood than the diffusive limit. In a set of early analyses, Pearlstein and 
co-workers (44) obtained a number of exact results characterizing the 
trapping rate at zero temperature in one-dimensional tight-binding chains 
containing absorptive traps. Subsequent work by Kenkre, (45~ using the 
Boltzmann equation, and Huber, (46) using multiple-scattering approaches 
to the Green's function, considered the trapping of coherent Bloch-type 
excitations in the presence of a finite concentration of randomly distributed 
traps. The use of generalized master equations by Kenkre and co-workers 
led to an approach to the quantum trapping problem involving the evolu- 
tion of probabilities in real space similar to those that had been used for 
the case of diffusive motion. (28 30) 

The validity of these earlier approaches has been difficult to ascertain 
until recently due to the realtive dearth of numerical approaches for 
studying the problem. Standard numerical methods (19 20.22) that have been 
developed to study diffusion-limited trapping are often not directly 
applicable because they are based upon quantities such as the number of 
distinct sites visited by a particle--a quantity dependent upon the particle's 
path and therefore not quantum mechanically well-defined. Experience 
with the diffusive problem suggests, however, that the kind of analytical 
approaches adopted earlier will give a reasonable description of the 
survival probability at short times, but will remain insensitive to the true 
asymptotic behavior of the survival probability and, specifically, to any 
Lifshitz-tail effects which might arise at long times. It is on this limit, i.e., 
that in which the motion of the mobile species is described by a purely 
wavelike evolution, and in particular on the associated Lifshitz tail effects, 
that we focus here. 

2. MODELS 

The starting point of most previous analysis of the low-temperature 
problem has been with evolution equations that are equivalent to a 
Liouville-von Neumann equation 

do~ t i t  = --i[ H, p ] (1) 

for the reduced single-particle density matrix p(t), in which the effective 
(but non-Hermitian) Hamiltonian, written in the basis of site-localized 
states In), 

H= ~ Jn, m(ln)<ml + I m ) ( n l ) - ~  In) iVn(nl (2) 
t / , m  n 
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contains terms which assign to the trap-coupled sites an imaginary compo- 
nent of the energy, thus giving them a finite lifetime arising from the 
coupling to trap molecules. In this equation, the quantity V, describes the 
decay of amplitude from site n due to the coupling to the trap states. The 
exact form that it takes depends on the nature of the traps which have been 
doped into the material. Two different models have been studied. (44 49) Sub- 
stitutional traps occupy normal sites of the lattice, and probability 
amplitude is assumed to decay into them from the 2d nearest-neighbor lat- 
tice sites. Interstitial traps are assumed to reside in the interstices, and 
amplitude decays into them from, e.g., the nearest lattice site. The distinc- 
tion is of qualitative importance, however, only at zero temperature and in 
one-dimensional systems with strictly nearest-neighbor transfer matrix 
elements between lattice sites. In this limit, particles created in a linear 
chain terminated on each end by substitutional traps can only migrate 
within the chain or decay to the terminating traps. The dynamical problem 
then separates into that of: (1)obtaining the solution for each cluster of 
fixed size N, and then (2) statistically weighting the solutions so obtained 
by the distribution for clusters of a given size. Thus, as pointed out by 
Pearlstein and Hemenger, (44) the survival probability can be written 

P(t) = ~ Nq2(1 - q)U-1 PN(t ) (3) 
N 

The decay from each cluster will be bounded from below by that for the 
most slowly decaying eigenstate in each. By analyzing such states, a lower 
bound for the survival probability can therefore be obtained. (47) Thus, 
attention is focused on the eigenstates and complex eigenvalues of the non- 
Hermitian Hamiltonian for a cluster of length N terminated at each end by 
sites with an imaginary site energy iV. As shown in ref. 47, the eigenstates 
of such a cluster take the form 

N 
Ik) = ~ [Ak cos(kn) + Bk sin(kn)] In) (4) 

n = l  

where the allowed wavevectors satisfy the equation 

( V 2 q_ j 2 )  s in  k 

tan(kN) = 2 i J V -  (j2 _ V 2) cos k (5) 

From the solutions k of this equation the real and imaginary components 
of the energy follow from the formal solution to the eigenvalue equation 
E k = 2Jcos(k)= ek- iFk.  Figure 1 contains a plot of the eigenvalues for 
trap-terminated chains of different length. Notice that it is the long- 
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Fig. 1. Eigenvalues for coherent exciton chains of 15, 55, and 95 sites terminated at each end 
by imaginary site energies of magnitude V= J. 

wavelength states near the band edges that have the smallest imaginary 
component of the energy, and thus the longest lifetime. Note also that 
corresponding states in longer chains live longer than ones in shorter 
chains. Analys)s reveals that the longest-lived states in each chain have a 
decay amplitude given, asymptotically in N, by the expression (47) 

4 VJ2~ 2 1 
Fn ~ V2 + j2  N 3 (6) 

Thus the survival probability for each chain is bounded from below by an 
expression of the form Pu(t)> fu  exp(--2Fut ). By averaging this over the 
chain length distribution and performing a saddle point analysis, the result 
P(t) ~exp(- -At  ~/~) is obtained with p = (1 - q )  and 1471 

8 ln3/4(1/p) ( 3VJ2~ 2 ~1/4 
A -  3 \2(VZ+JZ)] (7) 

In the interstitial model in any dimension the problem does not divide 
neatly up into clusters in this fashion. (48'49) The survival probability con- 
tinues to depend, however, on the eigenstates and complex eigenvalues of 
the effective Hamiltonian H. Note that the form of H is similar in this limit 
to that of a tight-binding binary alloy with two types of site energies, (54'55) 
one of which is strictly imaginary. This has interesting consequences. With 
real site-energy defects, all eigenvalues lie along the real axis. Thus, 
although the analytic continuation of the averaged Green's function 
g+ (z)= ( ( z - H  + i0 + ) -1 )  can have singularities off the axis (see, e.g., the 
discussion of Lloyd's model in refs. 54 and 55), the eigenvalue density 
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remains concentrated on the real axis. With random imaginary site energies 
the eigenstates acquire a lifetime, and the eigenvalues themselves move off 
the axis. This results in an eigenvalue density p(z) defined at arbitrary 
points of the complex plane. We note in passing that it is straightforward 
to generalize the standard expression for obtaining the density of real 
energy states from the Green's function to the situation in which the 
density is distributed over a region of the complex plane. We find, e.g., with 
z = e - iF, that 

p(e, F) = Re c~G c~G & - [ m  0---T (8)  

where G=Tr(g) .  At any case, the asymptotic results that have been 
obtained thus far for the interstitial model are necessarily less rigorous than 
for the one-dimensional substitutional model. Nonetheless, it can be argued 
that, as in the diffusive problem, the long-lived states are those centered in 
statistically-rare trap-free regions of the medium surrounded by regions of 
more typical trap density. As in the substitutional model in one dimension, 
the longest-lived states in these regions are those states of asymptotically 
long wavelength which decay quickly into the region outside the void 
where trapping can occur. In ref. 49 an estimate of the asymptotic decay of 
P(t) was given through a calculation which focused on the average 
behavior of a transport particle centered in such a trap-free void and which 
treated the region outside the void using a constant absorptive potential 
calculated within the virtual crystal approximation (VCA). In this 
approximation 

V,--. ( V , )  = - i q V  for Inl > R 
(9) 

--->0 for Inl < R  

By considering small-wavevector (continuum) solutions of the Schr6dinger 
equation, it was shown that the most slowly decaying modes associated 
with such a potential have eigenvalues, given asymptotically in R, by the 
expression E =  Jk 2 with 

k = k o  (1 Jexp(irc/4).~ 
qVR2 ) (10) 

Hence, it is found that 

xo 
E ~  Jk~-i--Rg \ q V j  (11) 
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where x0 = Rko is the first root of the lowest d-dimensional solution to the 
radial Helmholtz equation. It is reasonable to expect, then, that the decay 
of particles created in trap-free voids of radius R will be bounded from 
below by an expression of the form 

PR > f ( R )  exp( - 2FR t) 

where FR can be estimated from the imaginary part of Eq. (11), i.e., 

(12) 

(2j3~1/2 R 3 (13) 
r ,  ~ x 2 \ q V )  

By averaging the decay associated with this rate over the size R of the 
trap-free region in which the particle initially finds itself, we then obtain an 
estimate for P(t),  namely 

P(t)  ~ j dR f ( R )  exp( - c~R d - fltR 3) 

e x p [ - A t  d/(d+ 31] (14) 

Within this simple phenomenological argument, then, we find the following 
results as a function of dimensionality: 

1D: P(t)  ~ exp( - A t  1/4) 

A - 81n314(1/P)(~-)i/4(j-qV)'i83 (15) 

2D: P(t)  ~ exp( - At  2/5) 

5 (2~ ln(1/p)~ 'i5 ( x 4 J ~  'is 
A = ~ \  .~ ) \ 2 ~ J  (161 

3D: P(t)  ~ exp( - A t  I/2) 

/ 1 \ G 112 i/4 
A = I16~2 in t p ) J  ( + )  (17) 

3. N U M E R I C A L  RESULTS FOR O N E - D I M E N S I O N A L  CHAINS 

To test some of these ideas regarding the asymptotic dynamics of the 
coherent limit of the trapping problem--more specifically, regarding the 
validity of the approximate arguments which have been applied to the 
interstitial model--we have performed a series of numerical diagonaliza- 
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tions of the effective (non-Hermitian) Hamiltonian for one-dimensional 
chains containing a random distribution of interstital traps. In Fig. 2 we 
present a typical eigenvalue distribution for a chain of 800 total sites. A cer- 
tain fraction of these sites were associated, with probability q= 0.1, with 
interstitial traps modeled using an imaginary component of the site energy 
of magnitude V = 9". Notice the Lifshitz tails of states with small imaginary 
components (decay amplitudes) associated with real energies near the band 
edges. These states clearly represent the type which were the focus of the 
approximate treatment leading to Eqs. (15)-(17). In addition, there are a 
large number of states with decay amplitudes in the region of 0.1 V, which 
would correspond to states which are effectively delocalized throughout the 
chain and thus have ~Im H ) ~  -qV. There are also a smaller number of 
states with decay amplitudes very close to V, corresponding to states which 
are localized on clusters of trap states (so that {Im H )  ~ - V). Such states 
could be important in a more complete theory which addresses the short 
to intermediate-time behavior that we have neglected. In ref. 48, we have 
shown how the distribution of the tails of the imaginary part of the eigen- 
value distribution is correctly predicted by the approximate treatment 
presented above. 

Turning to the time dependence, we show in Figs. 3 and 4 numerical 
calculations of P(t) based upon the numerical diagonalizations of 800-site 
random chains of the type whose eigenvalue spectrum is displayed in Fig. 2. 
In Fig. 3 we present the survival probability for six separate chains, using 
an initial condition in which the probability of any eigenstate of the chain 
being initially occupied is equal to 1/N, N being the number of sites in 
the chain. Each curve, therefore, represents the quantity @xp(-F~t)) ,  

0.1 
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-3 
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Fig. 2. E igenva lues  for an  800-site cha in  wi th  a concen t ra t ion  q = 0 . 1  of imag ina ry  site 

energies of magn i tude  V = J. 
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F ig .  3. Survival probability for six 800-site chains containing a concentration q = 0 . 1  of 
imaginary site energies of magnitude V =  J, for an initial condition corresponding to equal 
population of all eigenstates in the chain. 

averaged over all eigenstates of the corresponding chain. Note the signifi- 
cant spread in the curves for these six chains showing how, even for chains 
of this length, the survival probability is not totally self-averaging, but 
rather is subject to significant fluctuations which depend upon the distribu- 
tion of trap-free regions in each chain. In Fig. 4 we present the average of 
these curves with statistical error bars indicating the average deviation of 
the mean about the corresponding average values. The curve is plotted as 
a function of t 1/4 to facilitate the identification of the nearly linear behavior 
of the logarithmic plot, in agreement with the predictions of Eq. (15). It is 
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0 
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q = 0 . 1  
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F ig .  4. Average value of the six curves in Fig .  3 with error bars indicating the standard 
deviation of the mean, showing the stretched-exponential behavior predicted b y  Eq .  (15) .  
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Fig. 5. Average value of the six curves in Fig. 3 with error bars indicating the standard 
deviation of the mean, plotted as a function of t 1/2, to be compared with Fig. 4. 

interesting to note that this behavior does not occur at inordinately long 
times. We have also plotted in Fig. 5 the same data as a function of t 1/2, a 

form which has appeared in recent numerical work of Huber and Ching on 
a similar problem. The asymptotic region in the t U2 plot deviates more 
from linearity than that which appears in Fig. 4. We note, however, that 
the initial condition of Huber and Ching, corresponding to the initial 
population of a k = 0 mode of the ordered chain, is significantly different 
than what we have assumed here and thus the two results are not 
necessarily contradictory, particularly at these relatively short times. 

In summary, we have investigated the long-time, Lifshitz-tail behavior 
of the survival probability for the quantum mechanical counterpart to the 
standard trapping model. We have found it to be of a stretched-exponential 
form which is slower in any dimension than in the corresponding diffusive 
problem. As in earlier treatments of the problem, we have found that 
spectral analyses of the eigenvalue distribution provide a useful way of 
obtaining insight into the dynamics of the underlying physical problem. 
It is hoped that these techniques will prove of similar value in elucidating 
the short to intermediate-time behavior of the trapping kinetics in very 
low-temperature condensed phases. 
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